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Egomotion Estimation with Optic Flow and Air Velocity Sensors

Adam J. Rutkowski1 Mikel M. Miller1 Roger D. Quinn2

Mark A. Willis2
1Air Force Research Laboratory, Eglin AFB, FL, 32542, USA

2Case Western Reserve University, Cleveland, OH, 44106, USA

Abstract

We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity,
ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our
artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute
egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Al-
though many behaviors can be performed by only knowing the direction of travel, behavioral experiments
indicate that odor tracking insects are able to estimate the wind direction and control their absolute ego-
motion (i.e. groundspeed). The egomotion estimation method that we have developed, which we call
the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video
recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algo-
rithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for
the navigation of aerial vehicles in environments where signals from the Global Positioning System are
unavailable.

1 Introduction

Flying insects navigate proficiently through their environment using multiple sensory modalities and limited
computational resources (Taylor and Krapp, 2008). The use of multiple sensor modalities allows insects
to navigate in a wide variety of environmental conditions. Thus, flying insects can serve as inspiration for
methods and sensory systems that can be used to navigate unmanned aerial vehicles.

Flying insects use their compound eyes to detect optic flow, or the apparent motion of visual patterns
in their visual field. The optic flow at any point in the visual field is a combination of the insect’s own
translational and rotational motion, or egomotion, and the motion, if any, of the visual pattern at that part
of the visual field. Optic flow is essentially an angular rate of the relative motion of a visual pattern in a given
viewing direction. There are several artificial methods of computing optic flow from a vision sensor. Barron
et al. (1994) group these techniques into differential, region-based matching, energy-based, and phase-based
techniques. These techniques vary in computational complexity, and the accuracy of these techniques can
be dependent on the visual structure of the scene. In our work, we are not particularly concerned with how
optic flow is computed. Instead, we will focus on using optic flow in higher levels of processing to estimate
egomotion.

At the next level of processing, the optic flow field, which consists of a collection of optic flow vectors along
multiple viewing directions, is used to estimate egomotion. If everything in the environment is stationary,
the rotational egomotion and the direction of translational egomotion can be computed from the optic flow
field, but the magnitude of translational egomotion (i.e. groundspeed) is inversely related to the distance
of the scene from the visual system (Koenderink and van Doorn, 1987). For instance, Miao et al. (1996)
implemented a differential optic flow technique to estimate these quantities from a recorded image sequence
from a forward looking camera mounted aboard a helicopter. The computation of egomotion from a spherical
motion field has been formulated by Koenderink and van Doorn (1987), and a simpler, noniterative procedure
was developed by Dahmen et al. (2001). Srinivasan (1994) developed the image interpolation technique to
estimate egomotion directly from a sequence of image intensity patterns from a monocular camera without

This paper appeared in Biological Cybernetics 104(6): 351-367
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the intermediate step of computing the optic flow in multiple viewing directions. This technique was extended
by Bab-Hadiashar et al. (1995) and Nagle and Srinivasan (1996) to allow for the estimation of the component
of translational egomotion perpendicular to the visual system, and further extended to the full 6 degree-
of-freedom case by Nagle and Srinivasan (1997). However, the fundamental problem with using vision to
estimate egomotion is that the groundspeed cannot be determined unless the distance to features in the
visual field is known or can be measured or estimated.

In the UAV literature, several approaches have been taken to resolve the scale ambiguity problem that
is inherent with a visual system. Recently, Çelik et al. (2009) have proposed an approach for absolute
distance and groundspeed estimation using only a monocular camera; however, it is assumed that the flight
height is known. Franz et al. (2004) have developed a method of distance and groundspeed estimation using
an omnidirectional camera, but knowledge of the average scene distance is required. Flight height can be
measured with a downward looking distance measurement sensor, such as a sonar sensor (Conroy et al.,
2009) or a laser rangefinder (Garratt and Chahl, 2008). Another approach is to use stereo vision (Toupet
et al., 2007). It has also been common to use an inertial measurement unit to aid a vision based navigation
system to determine the distance to the scene. However, none of these engineering solutions is used by
flying insects. Since insects have fixed focus optics, closely spaced eyes, and typically only a small region of
visual overlap between their two eyes, their stereoscopic vision is only useful within a range of a couple of
centimeters (Srinivasan et al., 1999). Insects possess sensors for measuring angular rates (Pringle, 1948; Sane
et al., 2007); however, a sensor for measuring linear accelerations has not yet been found in insects. If a flying
insect could somehow estimate range by combining the information from its visual system with information
from another of its available sensors, then it could also estimate the magnitude of its translational egomotion.

Flying insects use a combination of their antennae and various types of mechanosensory hairs to detect air
currents (Gewecke, 1974). As an insect flies, the air current that it senses is a combination of its egomotion
and the wind. In the biological literature, this relationship is referred to as the triangle of velocities (Marsh
et al., 1978). In aeronautics, it is simply called the wind triangle (Comeaux, 1983). The velocity of the insect
relative to a stationary point on the ground is the ground vector, vg, the velocity of the air mass relative to
a stationary global reference frame is the wind vector, w, and the velocity of the insect relative to the air
mass is the air vector, va. The wind vector, ground vector, and air vector are related at any point in time,
t, through the vector equation (1).

w(t) = vg(t)− va(t) (1)

There is evidence that some insects can control their groundspeed in an absolute sense, particularly in
insects that use pheromones to attract and find mates. In several insect species, a male insect locates a
mate by flying upwind when it smells the sex-attractant pheromone released by a female of the same species
(Kennedy and Marsh, 1974). The speed at which they progress upwind while tracking an odor (i.e. the
upwind component of the ground vector) is nearly the same in any wind speed, thus these insects do not
fly at a preferred airspeed (Willis and Arbas, 1991; Zanen and Cardé, 1996; Foster and Howard, 1999).
If odor tracking insects were flying so as to maintain a preferred optic flow across their retinas, then it
would be expected that the ground vector would increase proportionally with odor plume altitude. However,
a proportional relationship between the ground vector and odor plume altitude has never been observed
for any odor tracking insect [moths Heliothis virescens and Grapholita molesta (Kuenen and Baker, 1982),
Epiphyas postvittana (Foster and Howard, 1999), beetles Prostephanus truncatus (Fadamiro et al., 1998), or
wasps Microplitis croceipes (Zanen and Cardé, 1996)]. Furthermore, during odor tracking, an insect must
be able to resolve the wind vector from the air vector, thus, from (1), it must also be able to determine its
ground vector.

We have developed a method that simultaneously estimates egomotion, wind velocity, flight height, and
ground slope using measurements from onboard air velocity and optic flow sensors. We call this algorithm
the opto-aeronautic algorithm. The validity of our estimator is tested in a variety of wind and ground slope
conditions.
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2 Approach

We divide our approach into three sections. First, we present a simplified formulation of the opto-aeronautic
algorithm. Next, we present an extended formulation of the algorithm that relaxes several of our assumptions
that were made in our simplified formulation. Finally, we present the procedure that we use to test the
extended formulation of the algorithm using simulated and experimentally collected data.

2.1 Simplified formulation

To introduce our approach, we begin with the simplified problem of determining egomotion when flying
directly forward in a constant wind over a flat ground. Onboard sensors measure the air vector and the
optic flow field. To estimate egomotion, we make the following assumptions, which will also be true in the
extended formulation.

1. The air vector and optic flow are measured simultaneously and sampled at a constant rate. This
assumption is made only to simplify the development of the algorithm. The time between samples, or
time step length, is ∆t.

2. There is no lag or bias in the optic flow and air velocity sensors. Any real sensor will have lag, however,
any lag that is present in the sensors will simply introduce lag in the estimation of egomotion, but will
not affect the quality of the estimate.

3. All visible objects are stationary, thus any optic flow is induced solely through the motion of the visual
system. If the field of view of the visual system is sufficiently wide, then objects that are moving in
the environment will contribute very little to the estimation of egomotion.

4. Only the downward looking portion of the optic flow field is used to estimate egomotion since this
portion of the visual field is known to contribute to speed control in flying insects (Kennedy, 1940;
Kennedy and Marsh, 1974).

We define the apparent egovelocity vector, γ, as an estimate of the apparent velocity scaled with respect
to the current height. The apparent egovelocity is obtained directly from the optic flow field, for example,
by using the image interpolation technique of Srinivasan (1994). In our simplified problem, we assume that
the ground vector, or in this case, groundspeed, is directly equal to the product of the apparent egovelocity
and the height. Thus, the wind is related to the apparent egovelocity, height, and airspeed through equation
(2).

w = γh− va (2)

Notice that this equation has two unknown quantities, w and h, which cannot be uniquely determined
at a single instant in time. We could uniquely solve for estimates of the wind speed and flight height, ŵ and
ĥ, by using (2) to create a system of two equations at two different points in time. However, the estimates
for wind speed and flight height would be highly dependent on noise in the measurements of γ and va. To
reduce the effects of sensor measurement noise on the estimation process, we solve for ŵ and ĥ in a least
squares sense. First, we collect measurements of γ and va over a short length of time and store them in
batch vectors, Γ and Va, as given in (3) and (4). These batch vectors can be thought of as a short-term
memory of the sensor measurements. We refer to this length of time as the batch window, which contains n
measurements.

Γ = [γ(t1) . . . γ(tn)]T (3)

Va = [va(t1) . . . va(tn)]T (4)

From (2), we formulate an estimate of the wind over all points in the batch window, Ŵ, in the following
manner.

Ŵ = Γĥ−Va (5)
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Since we know in this case that the wind is constant, we can use (6) as a model for the wind, where W̆
is a batch vector that contains the value of the wind model at each point in the batch window, bw is an
unknown wind model coefficient, and 1 is a column vector of all ones.

W̆ = 1bw (6)

Ideally, the wind estimate, Ŵ, and the wind model, W̆, should be equal at all points in the batch window.
However, since there may be noise in the sensors, we solve for values of bw and ĥ that minimize, in a least
squares sense, the difference between the wind estimate and the wind model. If we define the wind error,
Ew, as in (7), where || · || represents the 2-norm or Euclidean norm, we can formulate a linear least squares

problem, (8), to solve for bw and ĥ, which for our simplified problem takes the form of (9).

Ew = ||Ŵ − W̆|| (7)

minEw
2 (8)

min
ĥ,bw

∣∣∣∣∣∣1bw − Γĥ−Va

∣∣∣∣∣∣2 (9)

To solve the minimization problem of (9), first assume that the height is known. Using the Moore-Penrose
pseudoinverse, which is defined in (10) for any matrix T with more rows than columns, the wind coefficient
is obtained from (11).

T+ =
(
TTT

)−1
TT (10)

bw = 1+(Γĥ−Va) =
1

n
1T (Γĥ−Va) (11)

By substituting (11) back into (9), and defining a matrix Θ as in (12), where I is an n × n identity

matrix, we can now solve for ĥ according to (13).

Θ =
1

n
11T − I (12)

ĥ =
ΓTΘTΘVa

ΓTΘTΘΓ
(13)

A solution for the height estimate can only be obtained if the groundspeed is non-constant. Otherwise,
Γ will be in the null space of Θ, thus the product of Θ and Γ will be zero and the denominator of (13) will
be zero. In effect, changes in apparent egovelocity must be correlated with changes in airspeed to deduce
the effect of the constant wind. The groundspeed is determined by multiplying ĥ by γ, and the wind is
determined by substituting (13) back into (2).

2.2 Extended formulation

We now extend our formulation to consider the case of motion in three translational degrees-of-freedom and
one rotational degree-of-freedom about the y-axis (yaw) (Figure 1). Methods for overcoming the requirements
of zero pitch rate and zero roll rate are discussed later, but not explicitly included in the formulation. We
remove the requirement of a constant wind by introducing a parameterized wind model. We will also examine
the effects of noise in the sensor measurements on the quality of the egomotion estimates. In addition, we
will implement a more complex optic flow model that accounts for the effects of discrete time sampling.
Furthermore, we will extend the basic approach to handle flight over a sloped ground.

Our opto-aeronautic algorithm is summarized in the block diagram in Figure 2. The algorithm is divided
into three sections - air velocity preprocessing, optic flow preprocessing, and sensor fused estimation. The air
velocity preprocessing and optic flow preprocessing are independent and may be performed simultaneously.
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Figure 1: A flyer traverses over an inclined ground. The trajectory flown is not necessarily straight, as
indicated by the curved path across the ground. All variables are described in the text.
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measure air 
velocity vector, va

measure optic 
flow across 
field-of-view

compute relative differential 
egodisplacement, λ, from 
optic flow field

compute height 
scale factor, sh, 
using (21)

update relative 
egodisplacement
batch vector, Λ, 
using (22)

update relative 
egovelocity batch 
vector, Γ, using (23) 
and Table 1

update batch air 
velocity vector, Va, 
using (18) 

compute L
from Table 2 
and using (35)

estimate height, h, (and optionally 
ground slope, bgx/h and bgz/h), by 
solving (36)

estimate ground vector, 
vg, using (37) or (38)

estimate wind 
vector, w, using (1) 

air velocity 
preprocessing

optic flow preprocessing

sensor fused estimation

 

 

 

Figure 2. Block diagram of the aero-optical egomotion algorithm.

Figure 2: Block diagram of the information processing model of the opto-aeronautic algorithm
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Measurements of the air vector and optic flow are made in a body-fixed reference frame. We use a right-
handed Cartesian coordinate system to represent the sensor measurements. The coordinate system is fixed
to the visual system such that the x-axis is aligned with a horizontal projection of the longitudinal axis of
the flyer, the positive y-axis is directly upward (opposes the gravity vector), and the positive z-axis points
out the right side of the body (Figure 1). The first, second, and third components of the air vector and the
optic flow vector are the x-component, y-component, and z-component, respectively. We place a caret (ˆ)
above estimated quantities to distinguish them from ”true” quantities.

In contrast to the simplified problem, we no longer necessarily assume that the wind speed and direction
are constant. Instead, we assume that the wind is temporally smooth over a short time interval (the batch
window) and the terrain is spatially smooth. To implement the smoothness constraints, we use a sliding
batch, or moving horizon, estimation process in discrete time and we use batch vectors to organize the sensor
measurements and state estimates. Let V represent a batch vector that can be replaced with Va (batch air
vector), Vg (batch ground vector), or W (batch wind vector). The vector V with subscript ek contains the
nV most recent sensor measurements in the direction of ek, as in (14), where the directions e1, e2, and e3

are equivalent to the coordinate system axes x, y, and z, respectively. The batch vectors for all Cartesian
axes are then stacked to form an augmented batch vector as in (15).

Vek =


vek(t− (nv − 1)∆t)

...
vek(t−∆t)
vek(t)

 k = 1, 2, 3 (14)

V =

 Ve1

Ve2

Ve3

 =

 Vx

Vy

Vz

 (15)

We use a left-pointing arrow (←) to indicate an update of the batch vectors when proceeding from one
time step to the next. For example, the following statement indicates that the jth element of the vectors
Vx, Vy, and Vz is determined by multiplying b by the (j+1)th element of these vectors in the previous time
step.

vj ← bvj+1 (16)

Since the flyer may rotate about its vertical axis, the body-fixed coordinate system changes relative to
an inertial frame. A coordinate system fixed to the visual system rotates through an angle ∆θ when moving
from one time step to the next. The differential angular displacement ∆θ is determined directly from the
optic flow field. The rotation matrix, C, that transforms vectors from the reference frame of the previous
time step to the reference frame of the current time step is given by (17).

C =

 cos(∆θ) 0 − sin(∆θ)
0 1 0

sin(∆θ) 0 cos(∆θ)

 (17)

The short-term memory of air vector measurements contained in the batch air vector Va must be updated
so that all vectors are represented in the current body-fixed coordinate system. The batch air vector is
updated across time steps by using (18), where v(t) is the latest measurement of the air vector taken at the
current time.

va,j ←

{
Cva,j+1 1 ≤ j ≤ nVa

− 1

v(t) j = nVa

(18)

In our simplified formulation, we assumed that the apparent egovelocity, γ, can be computed directly
from the optic flow field. However, the optic flow field actually provides an estimate of the apparent egodis-
placement vector, λ, which may be computed along all three Cartesian axes, for example, using the technique
of Nagle and Srinivasan (1996). The apparent egodisplacement is the sum of two distinct components over
a short discrete time period. The first component of λ comes from the motion of the flyer relative to the
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inertial reference frame. The second component of λ comes from the change in ground elevation as the flyer
traverses over the ground (Figure 1). If the ground is inclined relative to the viewing axis of the visual
system, the distance to the ground will change as the flyer traverses in the x and z directions, even if there
is no vertical component of motion. This change will be perceived by the visual system as a change in scene
depth, or looming. If the slope of the ground along the direction of flight is positive and the vertical position
of the flyer is constant, the flyer will approach the ground and the apparent egodisplacement in the vertical
direction will be negative.

Define a point O as the point on the ground directly beneath the flyer at the current time (Figure 1).
Let p(t) denote the position of the flyer at time t relative to point O and represented with respect to the
body-fixed coordinate system at the current time. Let h(t) denote the true height of the flyer above the
ground, and let hg(t) denote the height of the ground, relative to a horizontal reference plane passing through
point O. Thus, hg is defined to be zero at the current time step. The apparent egodisplacement can be

defined using (19), where hg =
[

0 hg 0
]T

.

λ(t) = 1
h(t)

(
p(t)−p(t−∆t)

∆t − hg(t)−hg(t−∆t)
∆t

)
= 1

h(t)∆t (∆p(t)−∆hg(t))

= 1
h(t)∆t

 ∆px
∆py −∆hg
∆pz



= 1
h(t)∆t

 ∆px
∆h
∆pz


(19)

We store values of λ over a short time period in a batch vector, Λ. If we store the apparent egodisplace-
ment over the batch window as a function only of the current height, it will later only be necessary to solve
for the current height rather than solve for the height at each time in the batch window. By rearranging the
expression for λy in (19), we formulate an estimate of the height at the previous time step given an estimate
of the current height and a measurement of the apparent egodisplacement, as in (20).

ĥ(t−∆t) = (1− λy(t) ·∆t)ĥ(t) (20)

We define a scale factor, sh, in (21), that represents the relative change in height from one time step to
the next.

sh = 1− λy(t) ·∆t (21)

Thus, we can update Λ across time steps using (22).

λj ← shCλj+1 1 ≤ j ≤ nΛ − 1 (22)

We now need to estimate the apparent egovelocity, γ, from the egodisplacement vector. We first define
the relative apparent position as the summation of egodisplacement from the start of the batch window up
to some point in time. The simplest method of estimating the apparent egovelocity is to use a backward
difference scheme applied to the relative apparent position. This is equivalent to setting the egovelocity equal
to the egodisplacement. The egovelocity can also be estimated from the egodisplacement using a central
difference scheme, whereby the egovelocity is estimated at the middle of three relative apparent position
points from the slope of a line fit to those three points. Higher order methods of estimating egovelocity
from relative apparent position can also be devised. In a method described by (Lanczos, 1988) and used by
(Rayner and Aldridge, 1985), velocity is calculated from the slope of a parabola that is fit to a neighborhood
of five sampled position points (or a neighborhood of four points near the ends of the batch window). We
will refer to this method as the parabolic difference scheme. One may also choose not to compute finite
differences near the endpoints, resulting in a truncated set of egovelocity estimates. The backward, central,
central truncated, parabolic, and parabolic truncated egovelocity computation methods are summarized in
Table 1.
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Table 1: Methods of computing apparent egovelocity, γ, from apparent egodisplacement, λ

method apparent egovelocity computation batch vector lengths

backward γnΓ = λnΛ

nVa = n
nΓ = n
nΛ = 1

central
γnΓ−1 = 1

2 (λnΛ
+ λnΛ−1)

γnΓ
= λnΛ

nVa = n
nΓ = n
nΛ = 2

central truncated γnΓ = 1
2 (λnΛ + λnΛ−1)

nVa = n
nΓ = n− 1
nΛ = 2

parabolic

γnΓ−2 = 1
10 (2λnΛ

+ 3λnΛ−1 + 3λnΛ−2 + 2λnΛ−3)

γnΓ−1 = 1
20 (11λnΛ

+ 8λnΛ−1 + λnΛ−2)

γnΓ = 1
20 (21λnΛ + 8λnΛ−1 − 9λnΛ−2)

nVa
= n− 1

nΓ = n− 1
nΛ = 4

parabolic truncated γnΓ
= 1

10 (2λnΛ
+ 3λnΛ−1 + 3λnΛ−2 + 2λnΛ−3)

nVa
= n− 1

nΓ = n− 3
nΛ = 4

The augmented batch vector of apparent egovelocity, Γ, is updated from one time step to the next using
(23). Notice that it is not necessary to compute the egovelocity from the egodisplacement over each of the
nΓ samples. Instead, only the most recent values of γ need to be computed from λ using one of the apparent
egovelocity computation methods listed in Table 1.

γj ← shCγj+1 1 ≤ j ≤ n− nΛ (23)

2.2.1 Ground shape model

In our simplified formulation, we assumed that the ground was level. We now extend our formulation to
allow for flight over an inclined ground. We consider two cases - when the ground slope is known and when
it is not known. We define a vector ξ̂ that contains the unknown quantities that must be estimated. In the
first case, ξ̂ represents the unknown height, in the second case, ξ̂ is a vector containing estimates of both
the height and the ground slope (Table 2).

An estimate of the ground vector can be computed from the apparent egovelocity, an estimate of the
ground height, Ĥg, and the estimate of the height of the flyer using (24) as shown in Figure 1.

Vg = Γh− ∂

∂t
Ĥg (24)

If the ground height is known, Ĥg is replaced with Hg, otherwise, a model of the ground height must be
used. The ground can be modeled as a plane and expressed as a linear function of x and z. Although higher
order ground shape models are certainly possible, they are not explored here. Let bgx denote the product of
the height of the flyer, h, and the slope of the ground in the x-axis (Figure 1). Similarly, define bgz in the

z-axis of the flyer, and let Bg =
[
bgx bgz

]T
. The terms bgx and bgz are defined in this way so that they

may later be estimated from a linear system of equations. The rate of change in height of the ground as a
function of time at the point directly beneath the flyer can be written as in (25) and (26).

∂
∂thg =

∂hg

∂x
∂x
∂t +

∂hg

∂z
∂z
∂t

=
bgx
h vgx +

bgz
h vgz

(25)

8
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∂
∂tĤgy = ∂

∂t


ĥg(t− (nΓ − 1)∆t)

...

ĥg(t−∆t)

ĥg(t)

 = Γxb̂gx + Γz b̂gz

∂
∂tĤgx = ∂

∂tĤgz = 0

(26)

By substituting (26) into (24) and arranging in matrix form, we obtain the expressions for the estimate

of the batch ground vector, V̂g, given in Table 2.

2.2.2 Wind model

The batch wind vector over nΓ time steps is estimated using (27), where the truncated batch air vector, V′a,
only includes the first nΓ terms of each Cartesian component of Va.

Ŵ = V̂g −V′a (27)

In our simplified formulation, we assumed that the wind was constant. We now assume that the wind
may be modeled by a low order polynomial over the batch window. Let w̆ be a polynomial approximation
to the true wind vector w. The expression for w̆ is given by (28), where m is the degree of the polynomial.
The coefficients of the polynomial curve are organized into an augmented batch vector Bw of length 3(m+1)
as given by (29).

w̆(t− j∆t) = bw0 + bw1(t− j∆t) + · · ·+ bwm(t− j∆t)m (28)

Bwek =


bw0ek

bw1ek
...

bwmek

 k = 1, 2, 3 Bw =

 Bwe1

Bwe2

Bwe3

 (29)

From (28) and (29), we formulate a matrix equation that defines the polynomial approximation to the
wind vector over nΓ time steps. First, we define the Vandermonde matrix T as in (30), which replaces the
vector 1 in (9) in the simplified formulation (note that 1 is a Vandermonde matrix with m = 0).

T =


1 0 0 . . . 0
1 ∆t (∆t)2 . . . (∆t)m

1 2∆t (2∆t)2 . . . (2∆t)m

...
...

...
...

1 (nΓ − 1)∆t ((nΓ − 1)∆t)2 . . . ((nΓ − 1)∆t)m

 (30)

The wind model for each Cartesian axis is now formulated using (31), and the terms W̆e1
, W̆e2

, and

W̆e3 are stacked into an augmented batch vector W̆ of length 3nΓ using (32).

W̆ek = TBwek k = 1, 2, 3 (31)

W̆ =

 W̆e1

W̆e2

W̆e3

 =

 T 0 0
0 T 0
0 0 T

Bw (32)
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Table 2: Formulation of the vector of unknown parameters, ξ̂, the batch ground vector, V̂g, and the coefficient
matrix, L

ξ̂ V̂g L

ground slope known ĥ

 Γx

Γy

Γz

 ĥ−
 0 0

Γx Γz

0 0

Bg

 ΘΓx

Θ (−bgxΓx + Γy − bgzΓz)
ΘΓz


ground slope unknown

[
ĥ

B̂g

]  Γx 0 0
Γy −Γx −Γz

Γz 0 0

 ĥ

b̂gx
b̂gz

  ΘΓx 0 0
ΘΓy −ΘΓx −ΘΓz

ΘΓz 0 0



2.2.3 Height and ground slope estimation

The height and ground slope are estimated by finding values for ξ̂ and Bw that solve the minimization
problem of (8). If we assume for the moment that ξ̂ is known, then V̂g can be found from Table 2, Ŵ can
be computed from (27), and (8) can be treated as a simple linear least squares problem. The least squares
solution for the wind coefficient vector Bw is given by (33).

Bw =

 T 0 0
0 T 0
0 0 T

+

Ŵ (33)

Substituting the expression in (33) back into (32), (7), and (8) yields another linear least squares problem

for ξ̂, where I is an nΓ × nΓ identity matrix.

min
ξ̂

 (TT+ − I) 0 0
0 (TT+ − I) 0
0 0 (TT+ − I)

Ŵ

 (34)

The minimization problem of (34) can be solved efficiently by first taking the reduced QR factorization of
T, where QT is an orthonormal matrix with the same dimensions as T, and RT is a square upper triangular
matrix with dimensions (m + 1) × (m + 1). The expression TT+ − I can now be simplified as follows by
taking advantage of the fact that an orthonormal matrix satisfies the property that QT

TQT = I.

TT+ − I = QTQT
T − I = Θ (35)

Since T does not depend on time and ∆t is constant, the QR factorization of T only needs to be performed
once. Also, using the matrix QT as in (35) requires storage only for the matrix QT rather than separate
matrices T and T+, and avoids the explicit calculation of the pseudoinverse, which can be numerically
unstable.

We may now solve for ξ̂. We define a matrix L representing the coefficient of ξ̂ in the minimization prob-
lem. By substituting the expressions for V̂g and L from Table 2 into (27), then into (33), the minimization
problem takes the form of (36), which may be solved using any linear least-squares solution method.

ξ̂ = arg min
ξ̂

∣∣∣∣∣∣
∣∣∣∣∣∣Lξ̂ −

 Θ 0 0
0 Θ 0
0 0 Θ

V′a

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(36)

Notice that the wind model coefficients in the vector Bw do not need to be explicitly calculated to
determine ξ̂.

2.2.4 Ground vector and wind vector estimation

Once the height and ground slopes are estimated, the ground vector at the current time may be estimated
using (37), where b̂gx and b̂gz may be replaced with bgx and bgz if the ground slopes are known. However, λ
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Figure 3. Flight track of a pheromone tracking moth. Projections of the flight track onto 

horizontal and vertical planes are shown in gray. 

Figure 3: Flight track of a pheromone tracking moth. The moth generally moves from right to left. Projec-
tions of the flight track onto horizontal and vertical planes are shown in gray.

is the apparent egodisplacement and may be quite noisy since it comes directly from the measured optic flow.
Alternatively, the ground vector may be estimated from the most recent value of the apparent egovelocity, γ,
as in (38). However, the most recent egovelocity estimate may not correspond to the current time, depending
on the finite differentiation scheme that is used. We will examine the usefulness of both of these estimators
in the results section. Once an estimate of the ground vector is obtained, the wind vector is estimated from
(1).

v̂g(t) =

 ĥλxnΛ

ĥλynΛ − b̂gxλxnΛ
− b̂gzλznΛ

ĥλznΛ

 (37)

v̂g(t) =

 ĥγxnΓ

ĥγynΓ
− b̂gxγxnΓ

− b̂gzγznΓ

ĥγznΓ

 (38)

2.3 Test procedure

Position data of a moth tracking an odor plume in a wind tunnel were used to test the opto-aeronautic
algorithm. The data were taken from an experiment in which the moth was recorded with two cameras and
the position of both the head and the tail were digitized at 30 Hz. This allowed the body axis orientation to
be calculated. The particular trial chosen had 563 data points (N=563) or nearly 19 seconds worth of flight
data (Figure 3).

Although the moths in the experiment flew in a constant wind, the performance of the opto-aeronautic
algorithm was tested with both a constant wind and in natural wind conditions. Natural wind velocity data
were recorded parallel to the ground in an open athletic field (Van Horn Field at Case Western Reserve
University) using an orthogonal set of acoustic anemometers (Bailey, 2004). It is assumed that no wind
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Table 3: Methods of computing the ground vector, vg, from position data, p

method Vg

backward vg(tj) ≈


pj+1−pj

∆t if j = 1

pj−pj−1

∆t if j ≥ 2

central vg(tj) ≈


pj+1−pj

∆t if j = 1

pj+1−pj−1

2∆t if 2 ≤ j ≤ N − 1

pj−pj−1

∆t if j = N

parabolic vg(tj) ≈



−9pj+3+17pj+2+13pj+1−21pj

20∆t if j = 1

pj+2+7pj+1+3pj−11pj−1

20∆t if j = 2

2pj+2+pj+1−pj−1−2pj−2

10∆t if 3 ≤ j ≤ N − 2

11pj+1−3pj−7pj−1−pj−2

20∆t if j = N − 1

21pj−13pj−1−17pj−2+9pj−3

20∆t if j = N

smoothing spline GCVSPL implemented in Matlab (Woltring, 1986; Reina, 1998)

existed in the y-direction (perpendicular to the ground). The wind was sampled at 60 Hz with a resolution
of approximately 10 cm/s. The wind data were then low pass filtered to remove digitization effects and
resampled at 30 Hz.

Ground truth values for the ground vector and air vector were computed from the wind velocity and moth
position data using several different methods. The ground vector was calculated using the backward, central,
and parabolic ground vector estimation methods in Table 3, and by differentiating a natural cubic smoothing
spline fit to the position data using a Matlab implementation of the GCVSPL software package (Woltring,
1986; Reina, 1998). Using these different methods allowed us to detect any anomalies in the performance of
the opto-aeronautic algorithm that were an artifact of the ground vector estimation method. The ground
vector was then transformed into the body-fixed coordinate system and used as the true ground vector,
vg. The air vector was calculated by subtracting the wind vector from the ground vector. The apparent
egodisplacement, λ, was then calculated using (19), and the rotational angular egodisplacement, ∆θ, was
calculated as the angular difference in the longitudinal axis of the flyer in successive samples multiplied by
the sampling frequency of 30 Hz.

The performance of the opto-aeronautic algorithm was examined for both the deterministic (no noise)
sensor case and the stochastic sensor case. In the stochastic case, the airdata and apparent egodisplacement
were injected with uniformly distributed noise prior to input into our opto-aeronautic algorithm. Since Franz
et al. (2004) achieved a mean relative error of 7.5% for computing apparent translational egomotion from
optic flow, and the moths in our experiment were flying at a speed of approximately 30 cm/s at a height of
roughly 40 cm above the floor, we used an error in the range of ±0.1 radians per second for the translational
component of apparent egomotion. Franz et al. (2004) also achieved a mean error of 0.01 radians per second
for rotational motion, which is negligible. We used airdata noise in the range of ±10 cm/s, which roughly
corresponds to the performance of the acoustic anemometers that we used to collect the wind velocity data.

3 Results

The mean absolute error in height, Eh, was used to assess the accuracy of the opto-aeronautic algorithm
over the length of the flight track. Since the ground vector and wind vector are calculated from the height
estimate, a low value of Eh indicates that good estimates of the ground vector and wind vector were obtained.
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Since the algorithm has an initialization period during which the batch measurement vectors of length n are
filled, the first n estimates were excluded from the calculation of Eh. For a flight track of N total points,
Eh is calculated using (39).

Eh =
1

N − n

N∑
i=n+1

|h(ti)− ĥ(ti)| (39)

3.1 Constant wind condition

In this section, we examine the accuracy of height estimation when the wind is constant in the negative
x-direction with a speed of 100 cm/s. We plot the mean absolute error in height as a function of n (the
number of points used for the batch window) for each of the egovelocity computation methods given in
Table 1 and ground vector computation methods given in Table 3 (where the ground vector computation
is used only to generate the inputs of the air vector and egodisplacement vector as described previously).
Since the wind is constant, we set m, the degree of the polynomial approximating the wind, to zero.

First, we examine the case when there is no noise in the sensors (Figure 4). With no sensor noise, the
backward egovelocity computation method produces a value for Eh on the order of 10−14 cm for all values
of n when the ground vector is computed using a backward differencing scheme (Figure 4a). The central
truncated egovelocity computation method performs similarly when the ground vector is computed using
a central differencing scheme (Figure 4b), and the parabolic truncated egovelocity computation method
performs similarly when the ground vector is calculated using a parabolic differencing scheme (Figure 4c).
This demonstrates that the algorithm performs near the limits of numerical precision when the egovelocity
computation method is a perfect model for the ground vector. The non-truncated egovelocity computation
methods do not perform as well because they do not perfectly model the ground vector at the endpoints of
the batch window. When the ground vector was computed with a smoothing spline, all of the egovelocity
computation methods produce errors in the height estimate due to errors in modeling the ground vector
(Figure 4d). Even with no sensor noise, it is evident that the backward egovelocity computation method
is a bad choice because it performs poorly unless the backward ground vector computation model is a
good model for the true ground vector, which is unlikely. Overall, the parabolic and parabolic truncated
egovelocity computation methods are quite robust to unmodeled differences between the true ground vectors
and their finite difference approximations.

We now separately examine the effects of optic flow and air velocity sensor noise on the performance of
the algorithm. The resulting values for Eh with noise only in the optic flow sensors are shown in Figure 5,
and Figure 6 shows the results with noise only in the air velocity sensors. Compared to Figure 4, we see
that adding a small amount of noise to either sensor produces error in the height estimate, even when the
egovelocity computation method matches the ground vector computation method. This is not surprising. If
one examines the results closely for the parabolic and parabolic truncated egovelocity computation methods
when the ground vector is calculated with either the spline method or the parabolic method, it appears
that there is a limit to how well the algorithm can perform as n increases. Overall, the parabolic truncated
egovelocity computation method is the best choice since it produces a value of Eh < 2 cm for n ≥25 in all
tests, and it produces the lowest values for Eh when the most accurate ground vector computation methods
are used (the parabolic and smoothing spline methods).

3.2 Natural wind condition

We now examine the performance of the opto-aeronautic algorithm with both noiseless and noisy sensors in
the varying natural wind measured at Van Horn Field. Based on our results from tests in a constant wind,
we use the parabolic truncated egovelocity computation method and the spline ground vector computation
method. To determine the best values to choose for m (the degree of the polynomial approximating the
wind) and n (the number of points used for the batch window), the value of m is adjusted from 0 to 4 and
the value of n is adjusted from its lowest possible value (depending on the egovelocity computation method
used) to 50.

First, we examine the case of flying over level ground. In a varying wind, we see the advantage of using
a higher degree polynomial model of the wind (Figure 7). If the wind is variable, the 0th degree polynomial
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Figure 4. Mean absolute error in the height estimate, Eh, as computed using (29) from the 

output of the aero‐optical egomotion algorithm with zero noise in the air velocity and optical 

flow input. The results are shown for various values of the batch window length, n, when the 

ground vector is calculated from the recorded flight track using a backward differencing 

scheme (top left), a central differencing scheme (top right), a parabolic differencing scheme 

(bottom left), and a smoothing spline (bottom right). The five different methods listed in Table 

1 for estimating egovelocity from measurements of egodisplacement were tested, as indicated 

by the curve labels. 

a b

c d

Figure 4: Mean absolute error in the height estimate, Eh, as computed using (39) from the output of the
opto-aeronautic egomotion algorithm with zero noise in the air velocity and optic flow input. The results
are shown for various values of the batch window length, n, when the ground vector is calculated from the
recorded flight track using each of the methods given in Table 3: a backward differencing scheme, b central
differencing scheme, c parabolic differencing scheme, d smoothing spline. The five different methods listed
in Table 1 for estimating egovelocity from measurements of egodisplacement were tested, as indicated by the
curve labels.
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Figure 5. Error in the height estimate, Eh, as computed using the aero‐optical egomotion 

algorithm with uniformly distributed noise of ±0.1 rad/s in the translational components of 

optically detected  egomotion. Other details are the same as in Figure 4. 

 

a b

c d

Figure 5: Error in the height estimate, Eh, as computed using the opto-aeronautic egomotion algorithm with
uniformly distributed noise of ±0.1 rad/s in the translational components of optically detected apparent
egomotion. Other details are the same as in Figure 4.
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Figure 6. Error in the height estimate, Eh, as computed using the aero‐optical egomotion 

algorithm with uniformly distributed noise of ±10 cm/s in the air velocity measurements. Other 

details are the same as in Figure 4.  

 

 

 

 

 

 

 

 

a b

c d

Figure 6: Error in the height estimate, Eh, as computed using the opto-aeronautic egomotion algorithm with
uniformly distributed noise of ±10 cm/s in the air velocity measurements. Other details are the same as in
Figure 4.
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Figure 7. Error in height estimate, Eh, for flight over flat ground in a naturalistic wind 

environment. The results are shown for various values of the wind model degree, m, and the 

batch window length, n. The plots on the left show the results for noiseless sensors, while 

those on the right show the results for noisy sensors. The plots on the top show the 

performance of the algorithm when the ground slope is known (thus the parameters in the 

minimization problem of (26) are formulated according to the first row of Table 2), while those 

on the bottom show the results when the slope is unknown and must be solved for (using the 

parameters in the second row of Table 2). 

 

Figure 7: Error in height estimate, Eh, for flight over flat ground in a naturalistic wind environment. The
results are shown for various values of the wind model degree, m, and the batch window length, n. The
plots on the left show the results for noiseless sensors, while those on the right show the results for noisy
sensors. The plots on the top show the performance of the algorithm when the ground slope is known (thus
the parameters in the minimization problem of (36) are formulated according to the first row of Table 2),
while those on the bottom show the results when the slope is unknown and must be solved for (using the
parameters in the second row of Table 2).

performs the best for low values of n, but at higher values of n, the higher degree polynomials perform
better. This is reasonable since it is expected that a polynomial of higher degree would be needed to model
the wind over a longer time period. In some cases, particularly when m = 1, increasing n will actually lead
to a slight increase in Eh. Adding noise to the sensors does indeed increase Eh, but only by a small amount
for high values of n. Thus, the estimator is fairly robust to sensor noise, and most of the error in estimating
the height comes from the inability of the polynomial wind model to perfectly model the true wind profile.
An example of the comparison of the height estimate to the true height at each point in the flight track is
shown in Figure 8. Notice that in this case, the height estimate never diverges from the true height by more
than 11.0 cm.

We now examine the case of flight over an inclined ground with a slope in the x-direction of -0.2 and a
slope in the z-direction of 0.2 (Figure 9). The mean absolute error in height only improves slightly when
we explicitly solve for the ground slope rather than assume that the ground is level, and only when n ≥ 30.
However, the mean error in height (bias), as computed with (39) but without taking absolute values, is
generally reduced when we explicitly solve for ground slope. For example, when m = 1 and n = 50, the bias
in the height estimate goes from 1.8 cm when the ground is assumed level to only 0.1 mm when we explicitly
solve for the slope. The mean absolute error in height is even better if the slope of the ground is known,
but only by about 0.5 cm or less. Also, the advantage of using a higher degree polynomial approximation
to the wind diminishes when noise is added to the sensor data. An example of the comparison of the height
and ground slope estimates to their true values at each point in the flight track is shown in Figure 10. The
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Figure 8. Comparison of the estimated height to the actual height for flight over level ground 

when m=1, n=50, the ground slope is unknown, and both sensors are corrupted with noise. 

The mean absolute error in height, Eh, is 2.0 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Comparison of the estimated height to the actual height for flight over level ground when m = 1,
n = 50, the ground slope is unknown, and both sensors are corrupted with noise. The batch measurement
vectors of length n are filled during the initialization period shown in gray. The mean absolute error in
height, Eh, is 2.0 cm.

estimated ground slope has been transformed into the inertial reference frame so that it is easy to compare
to the true ground slope. Over the course of the flight track, the mean slope estimates are close to the
true values, but the ground slope error has a relatively large variance (slope in x: -0.23±0.12, slope in z:
0.21±0.05). Thus, the minimization criterion of (36) is not very sensitive to the estimate of ground slope,
which makes it difficult to obtain quality slope estimates. A comparison of the two different methods given in
(37) and (38) for estimating the ground vector shows that the estimator of (38) provides smoother estimates
of the ground vector and the wind vector, but at the expense of a time lag of two time steps, or 0.067 seconds
(Figure 11).

4 Discussion

In this work, we have demonstrated that it is possible, while airborne, to estimate absolute egomotion (the
ground vector), altitude, ground slope, and the wind vector using only inputs from an onboard downward-
looking visual system and onboard air velocity sensors. The method we have described works in both constant
and varying wind and even over sloped terrain. Our method also does not require any prior knowledge of the
environment or the flyer motion states. This work is significant in two ways. First, it presents a hypothetical
method for flying insects to estimate their ground vector and the wind direction. Second, it is a method of
velocity estimation that is suitable for aerial vehicles operating in environments where the Global Positioning
System (GPS) signal is unavailable.

Although odor tracking insects are clearly able to resolve the wind direction in flight, it is not known
exactly how they do this. It has been suggested that odor tracking insects maintain a constant sum of
the transverse and longitudinal components of the optic flow vectors in the ventral portion of their visual
field (Ludlow, 1984; David, 1986). The wind direction corresponds to the orientation at which the insect
detects minimal transverse optic flow, or wind-induced drift. However, a constant sum of transverse and
longitudinal optic flow components was not observed in odor tracking Manduca sexta (Willis and Arbas,
1998). Furthermore, the mechanism proposed by Ludlow (1984) ignores the relationship among the ground
vector, optic flow, and height, and also ignores the role of air velocity sense organs, which are clearly
important for insect flight (Budick et al, 2007; Taylor and Krapp, 2008). Input signals from the compound
eyes and from hairs that are sensitive to air currents are combined at a very early stage of processing in the
insect brain (Taylor and Krapp, 2008). Perhaps this is where the estimation of height and the decomposition
of the air vector into ground vector and wind vector components are performed.

GPS is an extremely valuable tool for airborne navigation. However, the GPS signal has limited use in
cluttered and indoor environments since the signal may be blocked by structures. The navigation of micro
aerial vehicles (MAVs) in an environment without GPS is particularly challenging due to the small size of the
vehicle, thus limiting the ability to carry computational power or bulky sensors. There is limited potential
for the use of stereoscopically computed range since the performance of a stereo pair of imagers depends on
the baseline separation distance between them (the farther apart, the better). Furthermore, since MAVs are
more affected by wind disturbances than larger aircraft, the ability to detect the wind could be used to help
mitigate its effects on control. Optic flow sensors have already been used on MAVs (Barrows et al., 2003;

18
DISTRIBUTION A



 9

 noiseless sensors noisy sensors 

0 
sl

op
e 

as
su

m
ed

 

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

number of points, n

E
h (c

m
)

 

 

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

number of points, n

E
h (c

m
)

 

 

kn
ow

n 
gr

ou
nd

 s
lo

pe
  

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

number of points, n

E
h (c

m
)

 

 

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

number of points, n

E
h (c

m
)

 

 

un
kn

ow
n 

gr
ou

nd
 s

lo
pe

 

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

number of points, n

E
h (c

m
)

 

 

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

number of points, n

E
h (c

m
)

 

 

 

 

Figure 9. Error in height estimate, Eh, as a function of m and n in a variable wind over a ground 

with a slope of -0.2 along the x-direction and 0.2 along the z-direction. The plots on the top 

show the results when the ground is assumed to have 0 slope (by setting bgx=bgz=0 in the 

parameters of the first row of Error! Reference source not found.), the plots in the middle row 

show the results when the ground slope is known, and the plots on the bottom show the 

results when the ground slope is unknown and must be solved for. 

Figure 9: Error in height estimate, Eh, as a function of m and n in a variable wind over a ground with
a slope of -0.2 along the x-direction and 0.2 along the z-direction. The plots on the top show the results
when the ground is assumed to have 0 slope (by setting bgx = bgz = 0 in the parameters of the first row of
Table 2), the plots in the middle row show the results when the ground slope is known, and the plots on the
bottom show the results when the ground slope is unknown and must be solved for.
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Figure 10. Comparison of the height and ground slope estimates to their true values for flight 

over an inclined ground when m=1, n=50, the ground slope is unknown, and both sensors are 

corrupted with noise. The mean absolute error in height, Eh, is 2.9 cm, the estimated ground 

slope in x has a mean of ‐0.23 cm and standard deviation of 0.12 cm, and the ground slope in z 

has a mean of 0.21 cm and standard deviation of 0.05 cm. 

 

 

 

 

 

Figure 10: Comparison of the height and ground slope estimates to their true values for flight over an inclined
ground when m = 1, n = 50, the ground slope is unknown, and both sensors are corrupted with noise. The
batch measurement vectors of length n are filled during the initialization period shown in gray. The mean
absolute error in height, Eh, is 2.9 cm, the estimated ground slope in x has a mean of -0.23 and standard
deviation of 0.12 , and the ground slope in z has a mean of 0.21 and standard deviation of 0.05.
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Figure 11. Comparison between the actual and estimated values of the ground vector and 

wind vector components as computed from the  egodisplacement measurement (left, using 

(27)) and as computed from the  egovelocity estimate (right, using (28)) 

Figure 11: Comparison between the actual and estimated values of the ground vector and wind vector
components as computed from the apparent egodisplacement measurement (left, using (37)) and as computed
from the apparent egovelocity estimate (right, using (38))
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Ruffier and Franceschini, 2004; Zufferey and Floreano, 2005; Griffiths et al., 2006; Conroy et al., 2009), and
biomimetic artificial hair cells are a promising technology for air velocity sensing on a small platform (Liu,
2007). Thus, our opto-aeronautic algorithm is particularly well suited to the estimation of egomotion and
wind velocity in MAVs.

In the development of our opto-aeronautic algorithm, we restricted our computation of egomotion to use
only the downward looking portion of the visual field. Although algorithms exist for computing egomotion
from an omnidirectional field of view, the computed egodisplacement vector is either scaled to have unit
length (Koenderink and van Doorn, 1987) or requires knowledge of the average scene distance (Franz et al.,
2004). An egodisplacement vector of arbitrary scale at each time step is not sufficient for our algorithm,
particularly in the computation of the height scale factor, defined in (21), that relates the height at previous
time steps to the current height. Instead, the apparent egodisplacement must be computed such that it is
scaled with respect to the distance to visual cues, which is possible when the computation of egomotion is
restricted to a portion of the visual field with minimal variation in distance.

Since we intend for our opto-aeronautic algorithm to be implemented on an MAV, the algorithm must be
computationally efficient so that it can execute on a processing unit with low mass and low power demand.
To test if our algorithm is suitable for such an application, we implemented our algorithm on a 16-bit
microcontroller (dsPIC30F series) available from Microchip Technologies Inc. With m = 1 (which assumes
the wind is linear over the batch window) and without the estimation of ground slope, our algorithm could
operate at a rate of 60 Hz.

Although we have ignored the contribution of roll and pitch on optic flow, this can be corrected for
through the sensing of angular rates. Many flying insects possess structures for measuring their angular
velocity. Flies use halteres, which are small club shaped structures that beat at the same frequency as the
wings (Pringle, 1948). Recent work indicates that moths may use their antennae to sense angular rates
(Sane et al., 2007). These structures would allow a flyer to resolve the ambiguity of determining rotation
and translation from the optic flow field.

Although we have demonstrated that our opto-aeronautic algorithm provides good estimates of the
height, ground vector, and wind vector, we have not yet developed a method of estimating the accuracy of
the outputs of the algorithm without knowledge of the true state. This will be necessary since higher level
functionality may depend on how well the egomotion is known. Also, we plan to test the performance of the
algorithm with real optic flow and air velocity sensing hardware on a real flying platform.
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